
Geometry Exercise
Similar to:

Old Exam Question Feb. 2010, Ex. 5

Exercise

In this exercise we will implement a representation of
3D-geometrical objects in a computer game.

Given is a struct vec which stores 3D-vectors.

2

struct vec {

double x, y, z;

};

(Based on: Exam Feb. 2010, Ex. 5)

(x,y,z)

Exercise a)

(Based on: Exam Feb. 2010, Ex. 5) 3

// POST: returns the sum of two vectors

vec sum(const vec& a, const vec& b);

struct vec {

double x, y, z;

};

(x,y,z)

Exercise a)

Implement the following function which computes a new
vector obtained by adding two vectors.

Exercise a)

(Based on: Exam Feb. 2010, Ex. 5) 4

// POST: returns the sum of two vectors

vec sum(const vec& a, const vec& b) {

vec tmp;

tmp.x = a.x + b.x;

tmp.y = a.y + b.y;

tmp.z = a.z + b.z;

return tmp;

}

Solution a)

Exercise b)

(Based on: Exam Feb. 2010, Ex. 5) 5

struct vec {

double x, y, z;

};

Exercise b)

Propose a struct named line, which can be used to
represent 3D-straight-lines.

A particular straight line does not have to be representable
uniquely, but conversely every object of type line has to
represent a unique straight line. If necessary you can for this
reason define a suitable invariant (// INV:...) which has
to be met when using the line struct.

line

Exercise b)

(Based on: Exam Feb. 2010, Ex. 5) 6

line

Solution b)

Exercise b)

(Based on: Exam Feb. 2010, Ex. 5) 7

line

Two different
points

 unique line

Solution b)

Exercise b)

(Based on: Exam Feb. 2010, Ex. 5) 8

Solution b)

struct line {

vec a, b; // INV: a != b

};

Exercise c)

(Based on: Exam Feb. 2010, Ex. 5) 9

struct line {

vec a, b; // INV: a != b

};

// POST: returns a new line obtained by shifting l

// by v.

line shift_line (const line& l, const vec& v);

struct vec {

double x, y, z;

};

Exercise c)

Based on your struct line implement the following function
which returns a new shifted line.

Exercise c)

(Based on: Exam Feb. 2010, Ex. 5) 10

// POST: returns a new line obtained by shifting l

// by v.

line shift_line (const line& l, const vec& v) {

line tmp;

tmp.a = sum(l.a, v);

tmp.b = sum(l.b, v);

return tmp;

}

Solution c)

