Geometry Exercise

Similar to:
Old Exam Question Feb. 2010, Ex. 5

Exercise

In this exercise we will implement a representation of 3D-geometrical objects in a computer game.

Given is a struct vec which stores 3D-vectors.

```
struct vec {
    double x, Y, z;
};
```


Exercise a)

Exercise a)

Implement the following function which computes a new vector obtained by adding two vectors.
// POST: returns the sum of two vectors

```
struct vec {
    double x, Y, z;
};
```


Exercise a)

Solution a)

```
// POST: returns the sum of two vectors
vec sum(const vec& a, const vec& b) {
    vec tmp;
    tmp.x = a.x + b.x;
    tmp.Y = a. Y + b.Y;
    tmp.z = a.z + b.z;
    return tmp;
}
```


Exercise b)

Exercise b)

Propose a struct named line, which can be used to represent 3D-straight-lines.
A particular straight line does not have to be representable uniquely, but conversely every object of type line has to represent a unique straight line. If necessary you can for this reason define a suitable invariant (// INV: . . .) which has to be met when using the line struct.

```
struct vec {
    double x, Y, z;
};
```


Exercise b)

Solution b)

Exercise b)

Solution b)

Exercise b)

Solution b)

```
struct line {
    vec a, b; // INV: a != b
};
```


Exercise c)

Exercise c)

Based on your struct line implement the following function which returns a new shifted line.

```
// POST: returns a new line obtained by shifting l
// by v.
line shift_line (const line& l, const vec& v);
```

```
struct vec {
    double x, y, z;
};
```

```
struct line {
    vec a, b; // INV: a != b
```


Exercise c)

Solution c)

```
// POST: returns a new line obtained by shifting l
// by v.
line shift_line (const line& l, const vec& v) {
    line tmp;
    tmp.a = sum(l.a, v);
    tmp.b = sum(l.b, v);
    return tmp;
}
```

